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Abstract

The mathematics underlying the formalisms of ‘chemical reaction networks’— which describes
the interaction of molecules in a stochastic rather than quantum way — and that of ‘stochastic
Petri nets” — used to describe collections of randomly interacting entities — is very much like that
used in the quantum theory of interacting particles—but modified to use probabilities instead
of complex amplitudes. The report draws a a detailed analogy between quantum mechanics
and the theory of random processes. To heighten the analogy, the latter is called ‘stochastic
mechanics’.

To illustrate the analogy, a notation which is similar to that used in Quantum Mechanics is used.
This helps in emphasizing both similarities and distinction. The language developed enables
us to borrow tools from quantum mechanics into stochastic mechanics. This can be used to
express electrical circuits, models from population biology among others. This is a powerful tool
which can be used to solve problems, whose solutions may not be easily available in the existing

framework of stochastic mechanics.
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Introduction

There is an inherent difference between random processes and quantum mechanics. Events in
quantum mechanics are dependant on the “measurement”. In stochastic mechanics an observable
has no impact on the evolution of the system. There is no uncertainty principle. However, there
are many similarities between the two, which could be tapped to use the tools from quantum
mechanics in stochastic mechanics.

A language of stochastic mechanics is developed, which highlights the analogy between quantum
and stochastic mechanics. The report gives a general recipe to describe any stochastic process
as ‘petri net’ (which is analogous to Feynman’s diagrams). Construction of a Hamiltonian using
ladder operators from the petri-net is also demonstrated.

A major results in the theory of chemical reaction networks, the ‘Anderson—Craciun—Kurtz
theorem’ is explained using this analogy. The ‘Anderson—Craciun—-Kurtz theorem’ gives conditions
under which equilibrium exists when the number of molecules of each kind are treated as discrete,
varying in a random way. This is done using a tool borrowed from quantum mechanics: coherent
states.

Finally, the analogy is used to draw a parallel between stochastic and quantum mechanics,
providing an insight into the differences and the similarities with respect to time evolution,
symmetries and conservation laws. This analogy can be used to demystify quantum mechanics

theory a bit, and all ideas from quantum mechanics can be applied to biology and chemistry!



Chapter 1

Introduction to Random Processes

1.1 Stochastic Processes

A stochastic process is simply a collection of random variables indexed by time. A discrete time
stochastic process X = {X,,,n =0,1,2,...} is a countable collection of random variables indexed
by the non-negative integers, and a continuous time stochastic process X = {X;,0 <t < 0o} is

an uncountable collection of random variables indexed by the non-negative real numbers.

1.1.1 Examples

Bernoulli process is a sequence of independent and identically distributed random variables,
where each random variable takes either the value one or zero, say one with probability p and
zero with probability 1 — p. In other words, a Bernoulli process is a sequence of Bernoulli random

variables, where each coin flip, probability of head being p, is an example of a Bernoulli trial.

Markov Process is a stochastic process x(t) is called Markov if for every n and 1 < tg... < ¢y,

we have P(z(tn) < xplz (th1),...,2(t1))= P (z (t,) < xplx (tp_1)) » 1€ the current state

alone determines the next state.
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1.1.2 Formal Definition

Probability Space: A probability space (2, F, P) is defined as:

e A sample space, €2, which is the set of all possible outcomes.
e A set of events F, where each event is a set containing zero or more outcomes.

e The assignment of probabilities to the events; that is, a function P from events to

probabilities.

Stochastic Process: For a given probability space (€2, F, P), and measurable space (5, X)
a stochastic process is a collection of S-valued random variables, which can be written as
{Xtw):teT, weQ}

Remark We will always assume that the cardinality of T is infinite, either countable or
uncountable. If T'= Z*, then we called X a discrete time stochastic process, and if T = [0, c0),

then X is said to be a continuous time stochastic processes.

1.2 Rate Equation

This says how the expected number of things of each species changes with time. If we consider
large numbers of things, we obtain this simplified deterministic model. Consider an example of
the following couples differential equations. These are a special case of the Lotka-Voltera prey

predator model.

d
dit;=6x—va
@— Ty — O
o =Y =0y

In the above equations, let x(t) be the number of rabbits and let y(t) be the number of wolves

at time t.

o We get a term (x in the equation for rabbits, because rabbits are born at a rate equal to

the number of rabbits times the birth rate constant (.

e We get a term Jy in the equation for wolves, because wolves die at a rate equal to the

number of wolves times the death rate constant §.
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e We get a term ~xy in the equation for rabbits, because rabbits die at a rate equal to the

number of rabbits times the number of wolves times the predation rate constant ~ .

e We also get a term yxy in the equation for wolves, because wolves are born at a rate equal

to the number of rabbits times the number of wolves times ~.

FI1GURE 1.1: Simulation of Lotka-Voltera Model for § =~v=4§ =0.1

Note:In the rate equation, we assume the number of things varies continuously and is known

precisely ( this matches with the expectation of the species).

1.3 Diagrammatic Representation using a petri net

A stochastic Petri net describes in a very general way how collections of things of different
kinds can randomly interact and turn into other things.They are a convenient diagrammatic
representations to study complex systems. They are used in molecular biology, population

biology and queuing theory amongst others.

birth — >

predation \/ death

FIGURE 1.2: An example of a Petri net
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The above Petri net describes three processes, representing the same rate equation describe

previously:

e Birth: One rabbit comes in and two go out. This is a caricature of reality: these bunnies

reproduce asexually, splitting in two like amoebas.

e Predation: One wolf and one rabbit come in and two wolves go out.This is a caricature

of how predators need to eat prey to reproduce.

e Death: One wolf comes in and nothing goes out (assuming rabbits don’t die unless they’re
eaten by wolves.) This Petri net is a special case of the Lotka-Voltera Prey Predator
Model.

1.3.1 Formal Definition

Definition 1 A Petri net is defined by a set S of species and a set T of transitions, together

with a function

1:SxT—N

saying how many copies of each species shows up as input for each transition, and a function

0:SxT—N

saying how many times it shows up as output.

Definition 2: A stochastic Petri net is a Petri net together with a function

r: T —N

giving a rate constant for each transition
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1.3.2 Constructing a Rate Equation

Suppose we have a stochastic Petri net with k species. Let x; be the number of things of the ith

species, then the rate equation is

da:i .
dt

Zr(ni—mi)x’fl--'x?’“

reT

Here the summation is over all the transitions. Similarly, from the rate equation, we can construct

the Petri net by drawing one transition per element.

Let us define a vector,

x=(r1,...,2L)

where x; denote the expectation value of the i'h species at the given time. Similarly, we define

an input vector m, and an output vector n as

m o= (i, .., my)
n=(n,...,m)
mp

Furthermore, we define 2™ = z{"* -- - z;"* which helps us right the rate equation as:

S ) () — m(r))em)

E =
TeT

where n(7) and m(7) are the input and output vectors of the transition 7.



Chapter 2

A New Language for Stochastic

Mechanics

2.1 Master Equation

While the rate equation served well to give the expectation values, it does not give the information
of the probability of say the number of each of the species being {1,...,¢;. Let us define a k
-tuple of natural numbers ¢ = ({1, ..., ¢), giving the number of each species. This is different
from the state vector in rate equation which merely gave us the expectation values.Let 1y(t) be

the probability that the labelling is £ at time t. Then the master equation is given by:

%W (t) = Z[: Hypto(t)

for some matrix of real numbers Hyy. called the Hamiltonian. Note:In the master equation, we

assume the number of things varies discretely and is known only.

2.1.1 The state

Let there be a stochastic Petri net with £ different species. Let 1, . n, be the probability

77777

that there are n; things of the first species, n9 of the second species, and so on. The following
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notation is used — A vector is given as
n=(ny,...,nk) €

and

wn = wnl,...,nk

. We also define, for any variables z,

n _ nl...nk
z =2 Zk:

Then any formal power series in these variables will be

v = Z Pp2"

neNk

Finally, ¥ a state if the probabilities sum to 1

D tn=1
n
An example of a state is a monomial:

2=tk

This is a state with we are 100% chances that there are ny things of the first species, ny of the
second species, and so on. Hence, this is called a pure state. In general the state is mixed.
Master Equation The master equation describes how the probability of having various numbers
of species changes with time. In the master equation v describes probabilities, so it’s a vector in

a real vector space. The master equation says how a state evolves in time:

d
() = HU(b)
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2.2 Constructing the Hamiltonian

The Hamiltonian is built a linear operator from special operators that annihilate and create

things of various species.

2.2.1 Annihilation and Creation Operators

For each state 1 < ¢ < k we have a annihilation operator:

d
a;¥V = —Wv
! dzi
and a creation operator:
aI\IJ =z;U

Say, if at some time we’re 100% sure we have n rabbit, we have so applying the creation operator
gives a'¥ = 2"*1. One more rabbit! Now, if we start out with n rabbits: ¥ = 2" and then
apply the annihilation operator, we obtain a¥ = nz"~!. The 2"~! means we have one fewer
rabbit than before. The factor of n means there are n different ways to remove a rabbit. The
annihilation operator reduces the number of species by 1, while the creation operator increases
by one, for a pure state.

The creation and annihilation operators don’t commute:

d d
(aaT - aTa) U= %<Z\Ij) — z%\I/ =V

Hence, if the commutator [A, B] is defined as AB — BA,
aat —afa=1 = [a,aT] =1

This just means that just says that there’s one more way to put a rabbit in a cage of rabbits,

and then take one out, than to take one out and then put one in.
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2.2.2 Formal Procedure

Given a stochastic Petri net whose set of transitions is 7. Now, r(7) gives the rate constant of
the transition 7 € T,. Let n(r) and m(7) be the input and output vectors of this transition.

Then:
H= Z r(T) (aTn(T) — aTm(T)> o)

TeT

Here, the following shorthand notations have been used:

am(T) = QTI(T) e aznk (7)
Qi) g ghme )

We can understand the formula as follows: resume=,

Each transition 7 contributes to the Hamiltonian. Each term in the summation corresponds

to the contribution from a transition

e Each term is proportional to the rate constant. This is intuitive, since the change in the
number of species should be proportional to the rate of change of a process that eats up or

produces the given species.

e The term: af(Ma™) describes how m;(7) things of the ith species get annihilated, and

n;(7) things of the ith species get created, for every transition

e The term: —a!™(™a™™) says how the probability that nothing happens - that we remain
in the same pure state decreases as time passes. It is a factor added to conserve the sum

of probabilities to one.

2.3 Expectation of an Observable

2.3.1 Number Operator

We define the number operator as N = afa. This is an observable which amounts to multiplication
by n, the number of species:

NZ"=z—2"=n2"

dz
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Rule 1: For any formal power series ®

ZaTq) =z q)|2:1 = q)|2:1 = Zq)

Rule 2: For any formal power series ®

YN =) dla® =) ad

These rules are used together with the commutation relation [a, aT] = 1 and its consequences
[a,N]=a, [al,N]=—al
The expected value of an observable O in the probability distribution ¥ is > OW¥, and using the

master equation:
d d
2. 0%(t) =) 0= ¥(t)=) OHY()

Example: For the Hamiltonian H = a — N, and any initial conditions, the master equation
predicts that the expected number decays exponentially. This is seen as following: % YNU =
> NHVU =3 N(a— N)¥ The commutation relation [a, N| = a implies that Na = aN — a. So:

Y N@-N)¥=> (aN-N-N})v

From rule 2:

> @N-N-N)T=> (N>~ N-N)U=-) NU

Hence,
% Z NU = — Z N

This implies that the expected number decreases exponentially:

Z NU(t) =ce™"
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2.4 Feynman Diagrams

The solution of the master equation for a state vector ¥

d

—V(t) = HY(t
S(t) = HU (1)
is given by

(t) = e w(0)
Now, assuming the series converges, we can write:

(tH)?

tH
et =1+tH + 91

U(t) = W(0) + tHY(0) + qu;(o) Foe

This can be represented as a sum over Petri nets (Feynman Diagrams). The transitions are
represented by a node, and the species by a line. Each term is given as a product of annihilation
and creation operators. The Petri net can be constructed as follows: For each transition, draw
number of input lines corresponding to the power of annihilation operator and draw output lines

corresponding to the power of creation operator.

So, the sum over diagrams represented a sum over histories, each diagram representing a possible

history. This idea of sum over histories is borrowed from quantum mechanics.

2.5 Example from Biology

Let’s look at an example from population biology: Amoeba fission and competition Consider
the number of amoebae be given by P, rate of fission be given by « and the rate of competition
be given by 8. The rate equation for the Petri net is given by :

— —aP — BP?
i
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population
e
w,.\. -\.'-\.
I-S B x\-\ x:’\._
— Rad s S
s S EISTTEe
fission amoeb}\( '__-_-\‘-_:::"_-----”'I' -_ S R
D5p=z="" .=
competition e .
\ L 1 1 L L L 1 L 11 L 1 1 L i i1 1 Elmf
= 1 2 K] 4

FIGURE 2.2: Population growth in the
FIGURE 2.1: Petri net for the Model logistic model

For a = § = 1, various initial states give the following solution given by the logistic equation

(see figure).

The Master Equation says:

d
() = HU(b)

where H is an operator on formal power series called the Hamiltonian. We arrive at the following
Hamiltonian:

H=q« (aTaTa—N) + 5 (aTaa—N(N— 1))

Here, N = a'a is the number operator.The term containing N is obtained to conserve probability.

atatag- N
ataa N I. N 1)

F1GURE 2.3: Petri net corresponding to fission and competition respectively

We solve for the Time evolution: it’s equivalent to % (e "#W(t)) = 0 so that e 7 W (¢) is

constant, and so ¥(t) = e ¥(0)
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The Feynman’s diagrams can be obtained as follows:

00 1

tH __ nrrn

e’ = E —n!t H
n=0

1
:1+tH+§t2H2+---

The first-order terms correspond to the Hamiltonian acting once. These are proportional to
either o or 8. The second-order terms correspond to the Hamiltonian acting twice. These are
proportional to either o, af or 2 and so on. An example of a second order Feynman diagram

is as follows— Start with a lone amoeba ¥(0) = z which then reproduces and splits into two. The

resulting amoebas compete and one dies. This is represented by the following term:

%ﬁ (CLT(ICL) ((IT(ZTCL> z

amoeba

FIGURE 2.4: A typical history (Feynman’s diagram)



Chapter 3

Using the Toolkit

With the toolkit we have developed, we put it to test by using it to prove an important result
in Stochastic Mechanics— Anderson-Cracuin-Kurtz theorem. This is done using an important
concept of quantum mechanics— coherent states. We also prove a stochastic analogue of an

important result in quantum mechanics—Noether’s theorem

3.1 Anderson-Craciun-Kurtz Theorem

Theorem: Suppose ¢ € [0, oo)k is a complex balanced equilibrium solution of the rate

equation. Then

HY,.=0

The theorem hence gives a way to find equilibrium solutions.

3.1.1 Complex Balance

For our Petri net, the set of complexes is the set N*, and the complexes of particular interest are
the input complex m(7) and the output complex n(7) of each transition 7. We say a classical

state ¢ € [0, oo)k is complex balanced if for all complexes k € N¥ we have

Z ’I”(T)Cm(T) = Z T(T)Cm(T)

{r:m(r)=x} {rn(1)=xr}
15
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Hence, the net rate of production of the complex x is zero in the classical state c.
If a classical state ¢ is complex balanced, and we set z(t) = ¢ for all ¢, then z(¢) is a solution of
the rate equation. Since x(t) doesn’t change with time, it is the complex balanced equilibrium

solution.

3.2 Proof of Anderson—Craciun—Kurtz Theorem

3.2.1 Coherent States

The uncertainty principle says thatApAg > h/2 where Ap is the uncertainty in the momen-
tum and Aq is the uncertainty in position. Coherent state is defined as the one in which ApAq
is minimum and also Ap=Aq.

For the quantum harmonic oscillator, quantum states can be written as formal power series:

v = i Yn2"
n=0

where v, is the amplitude for having n quanta of energy. A coherent state is then given by:

where ¢ can be any complex number. The coherent state can be also used for classical stochastic
states like amoebas. The coefficient of z™ gives the probability of having n number of the species.

Hence, ¢ should be real, and the probabilities should sum to one.

This stochastic coherent state is in fact the Poisson distribution. For any ¢ € [0,00)¥ there is a

stochastic state called a coherent state, defined by

eCZ

Ve=—
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Part one of proof

If a classical state c is complex balanced, and we set x(t) = ¢ for all t, then x(t) is a solution of
the rate equation

Proof: Assuming c is complex balanced,

Z r (7_ m(T Z Z m(T)

weTl K 1:m(T)

=2 2

K Tm(T)=kK

-5 S e

K 1in(T)=kK

IR

HTn

_Z Z m(r)

K 1in(r)=kK

= ZT’(T)H(T)C ()

TeT

So we have,

S r()(n(r) — m(n)em =0

TeT

and thus if x(t) = ¢ for all t, then x(t) is a solution of the rate equation:

daj m\T
= 0= Y () nlr) — mlr)e")

Part two of Proof

If we take W(t) = W, for all times ¢, the master equation holds: %\Il(t) = HY¥(t) So, We just

need to show that H ¥, = 0.Since ¥, is a constant times e it suffices to show He® = 0.

Het = Z T’(T) (aTn(T) N aﬂ”(ﬂ) am(T)ecz

TeT
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Since the annihilation operator a; is given by differentiation with respect to z;, while the creation

T

operator a; is just multiplying by z;, we have:

He%” = Z T(T)Cm(T) (z"(T) — Zm(T)) oC?

TeT

Expanding out e®, we get:

i—n(T) i—m(T)
% — r(r Cm(T) ¢ - ¢ P
He™ =3 2 (o) ((i—n(T))! (i = m(m)! )

ieNk T€T

Splitting the sum over T according to output and then input complexes, making use of the

complex balanced condition:

i—n(T) ik

C : .
DPIIPIIFEILNCUNIE o ST
ieNk keNk Tin(T)=k (Z N n(T)) ieNk reNk (Z o /{)' rin(T)=k

_ ci*li ; ()
= n) z r(T)c
1ENF kENF T:m(T)=kK
i-m(r)
= r(r)em™ - 2

Hence proven.

3.3 Noether’s Theorem

3.3.1 Noether’s Theorem for Quantum Mechanics

Let X be a finite set. Suppose H is a self-adjoint operator on L?(X), and let O be an observable.
Then
[O,H] =0

if and only if for all states ¥ (t) obeying Schrodinger’s equation %¢(t) = —iH1)(t) the expected

value of O in the state ¢ (t) does not change with t.



Chapter 3. Results from Stochastic Mechanics 19

3.3.2 Markov Processes
Definition: Definition 4. Given a finite set X, a matrix of real numbers
H = (Hij)i,jeX

is infinitesimal stochastic if ¢ # j = H;; > 0 and

» Hy=0

ieX

for all 7 € X. From master equation:

¥(t) = exp(tH)ip(0)

If H is an infinitesimal stochastic operator, we will call exp (tH) a Markov process, and H its
Hamiltonian.

For an infinitesimally stochastic operator H,

/ HOW(t) = 0

and

& Jov = [omuw

This gives the following lemma for any observable O and infinitesimally stochastic operator H:

C‘Zt/oy)(z&) :/[O,H]w(t)

3.3.3 Stochastic Analogue of Noether’s Theorem

Suppose H is an infinitesimal stochastic operator and O is an observable. Then

[0,H] =0
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if and only if
d
— [ OY(t) =0
& [ov

and

d 9 B

and for all ¥(¢) obeying the master equation. That is the expected values of O and O? in the
state ¥ (t) do not change with ¢. Intuitively, an additional condition is that if the system can

move from state j to state i, then the observable takes the same value on these two states.

3.4 Proof of Stochastic Noether’s Theorem

Forward direction follows trivially from the lemma. For the Backward direction, we assume that

d d 9

& [ovw =4 [orm =0
for all solutions ¥ (t) of the master equation. This implies

/OHw(t) = /02H¢(t) =0

or since this holds for all solutions,

> OiH;=> O}H;=0

1eX 1€X

To show that [O, H] = 0. O is defined as a diagonal matrix with:

O, if i=j

0 if i#j

Oij =

So,

[0, Hij = (OiHy; — HixOkj) = O;Hij — HijO; = (0; — Oy) Hy
kex
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To show this is zero for each pair of elements ¢,j € X, it suffices to show that when H;; # 0,

then O; = O;. That is for any j € X

> (05— 0i)*Hij =0
1€ X

When i = j,0; — O; = 0, so that term in the sum vanishes. But when ¢ # j, (0; — OZ-)2 and H;;
are both non-negative — the latter because H is infinitesimal stochastic. So if they sum to zero,
they must each be individually zero. Thus for all ¢ # j, we have (O; — OZ-)2 H;; = 0. But this

means that either O; = O; or H;; = 0, which is what we need to show.

> (05— 00" Hij =y (OFHij — 20,0iHj; + O} Hij)
ieX J

=02 ZH,] — 20, Z O;H;j + ZO?HU

The three terms here are each zero: the first because H is infinitesimal stochastic, and the latter

two by the assumption. Hence proven.



Chapter 4

Parallel Between Quantum

Mechanics and Stochastic Mechanics

Quantum and Stochastic Mechanics are inherently different. In stochastic mechanics, there is
no uncertainty at play, neither is there a special status for measurement. We look in detail the

parallels between the two.

4.1 Probabilities v/s Amplitudes

e In a probabilistic model, we may instead say that the system has a probability ¥(z) of

being in any state € X. These probabilities are non negative real numbers with

D () =1

zeX

e In a quantum model, we may instead say that the system has an amplitude ¥(x) of being

in any state x € X. These amplitudes are complex numbers with

> @) =1

zeX

If we replace the sums with integrals, by replacing the set X my a measure space:

22
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e In a probabilistic model, the system has a probability distributiony : X — R which obeys
1 > 0 and

/X W(w)dz = 1

e In a quantum model, the system has a wave-function ¢ : X — C, which obeys

[ @par =1
X

4.2 States

e In probability theory, the probability distribution v is a vector in the space
LYX) = {qp X > C: /X [ (z)|dx < oo}

e In quantum theory, the wave-function v is a vector in the space
LA(X) = {w X = C: /Y [ () Pdx < oo}

e In quantum mechanics we often use this abbreviation:

0.0) = [ G0

so that a quantum state has

(¥, ¢) =1

e Similarly, we could introduce this notation in stochastic mechanics:

W)= [

so that a stochastic state has

(¥) =1
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e In quantum mechanics, (¢, 1) is well-defined whenever both ¢ and 1 live in the vector

space

L2<X>:{w:X%<C:/W<oo}

e In stochastic mechanics, () is well-defined whenever v lives in the vector space

200 ={v:x > ks [lv <o)

4.3 Observables

e In quantum mechanics, an observable is a self-adjoint operator A on L?(z). In the case

where X is a finite set, a self-adjoint operator on L?(x) is just one with
(, Ap) = (Arp, )
for all 1, ¢ € L?(X). The expected value of an observable A in the state v is

. Av) = [ 6w

e In stochastic mechanics, an observable is a real-valued function A on X. The expected

value of A in the state ¢ is

(a0) = [ v

4.4 Time Evolution

e In stochastic mechanics, a stochastic operator is a linear map U : L'(X) — LY(X) —

foo-fs

v2>0=Uyp >0

L'(X) such that

and
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4.5

for all ¢p € L'(X). If U is stochastic and v is a stochastic state, then Ut is again a

stochastic state.

In quantum mechanics, an isometry is a linear map U : L?(X) — L?(X) such that

{Ug,Utp) = (¢,9)

for all 1,¢ € L?(X). If U is an isometry and 1 is a quantum state, then Ut is again a

quantum state.

In quantum mechanics we are mainly interested in invertible isometries, which are called

unitary operators. However time evolution in stochastic mechanics is rarely invertible.

Infinitesimal stochastic versus self-adjoint operators

In probability theory we often describe time evolution using a differential equation called

the master equation

d

i (t) = Hy(t)

whose solution is

P(t) = exp(tH)ip(0)

In quantum theory we often describe time evolution using a differential equation called

Schrodinger’s equation

.d
it = H ()

whose solution is

Y(t) = exp(—itH)y(0)
In both cases, we call the operator H the Hamiltonian

In quantum mechanics, H is self adjoint, that is it has the following property

(Hi, ¢) = (¢, Ho)

This comes from the condition that exp(—itH) is unitary for all t.
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e In stochastic mechanics exp(tH) is stochastic, that is it has the following property

fowtmy - [

and

Y >0=exp(tH)y >0

The two conditions give that H is infinitesimally stochastic. That is:

> Hi=0

i€X

and

Hij>0if i # ]

So, H is infinitesimal stochastic if its columns sum to zero and its off-diagonal entries
are non-negative. The idea is that any infinitesimal stochastic operator should be the
infinitesimal generator of a stochastic process. This is the major difference between

generators of a quantum process and a stochastic process.



Scope of the Project

We have been able to draw a detailed analogy between quantum and stochastic mechanics. A
powerful tool to study random processes—Petri nets— have been explored. A more fundamental
master equation for the stochastic process has been used, to explain results relating to conserved
quantities and equilibrium solutions in stochastic mechanics.

While, a preliminary review of the two concepts of quantum and stochastic mechanics have
been done, it has lead to a lot of scope for work. The study suggests a different way to view
Quantum and stochastic mechanics. The traditional idea is that quantum theory generalizes
classical probability theory by considering observables that don’t commute. Instead of looking
at quantum mechanics as a super-set of probability theory, which is the the typical view of how
quantum mechanics and probability theory come into contact, a possible view could be such
that quantum theory does not subsume probability theory, but they intersect. An interesting
intersection of the Quantum and stochastic Mechanics lies in Network theory— of electrical
circuits! (or in general any graph with positive edges) It would be interesting to explore what
new solutions to problems and new insights helping us demystify quantum mechanics are offered

by this new point of view.
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