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Introduction

When the technology to build quantum computers becomes available, it is likely that it will

only be accessible to a handful of centers around the world. Much like today’s rental system

of supercomputers, users will probably be granted access to the computers in a limited way.

Another scenario is when two or more parties have access to limited quantum computational

power, but together if they trust each other, they could perform universal quantum computation.

In this project, we look at ways in which such multiparty computation, or assisted computation

could be performed in a secure way. We begin with looking at a scenario where Alice has limited

computational power, and takes help from Bob who has a universal quantum computer. She

does this in a secure way such that Bob cannot know her inputs or the function she is trying to

compute. But there are limited scenarios in which she could detect errors in Bob’s computation.

Next we look at a more powerful interactive protocol where Alice does not require any quantum

computational power or memory. This protocol is secure and fault tolerant. As Quantum

Machine learning and quantum Assisted Machine learning are fast gaining popularity, towards

the end, we also look at a protocol which allows a secure and blind way to execute a quantum

machine learning algorithm.
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Chapter 1

Secure Assisted Quantum

Computation

Suppose Alice wants to perform some computation that could be done quickly on a quantum

computer, though she can perform some basic gates, she cannot do universal quantum computa-

tion. She can, however, do classical computations. Bob can do universal quantum computation

and claims he is willing to help. We look at simple efficient protocols by which Bob can help

Alice perform the computation in a secure and reliable way. That is, Bob should not be able

to get any information about Alice’s input, neither should an eavesdropper Eve. Furthermore,

we look at the possibilities in which Bob cannot even know about the function Alice is trying

to compute. Ways to verify reliable computation by Bob is also considered. Such a scenario is

relevant to the case of a Universal Quantum Computer selling time on its QPU to users who

will have access to basic gates, but not a universal quantum computer. This is also called blind

quantum computation [3].

1.1 Problem Statement

Operations available to Alice are single qubit Pauli gates X and Z.

X =

[
0 1

1 0

]
, Z =

[
0 1

1 0

]

She can also swap her qubits. She can not perform any interaction between her qubits.

Bob has a universal quantum computer. We need a secure protocol such that Alice can perform

universal computation with the help of Bob

2



Chapter 1. Secure Assisted Quantum Computation 3

1.2 Protocols for Secure Assisted Computation

Alice uses a private quantum channel to transfer qubits. She encodes the qubit and then Bob

performs the gate on the qubit Alice would like him to, and sends it back to her. She can decode

it suitably, since she knows the key used in encryption. We show that there exists protocol such

that Alice can suitably decode the qubits after Bob applies the gate.

1.2.1 Blind Measurement

Here is the protocol such that Bob can securely help Alice measure her qubits.

1. Encoding: Alice generates two random numbers j, k. Alice encodes her qubit |Ψ〉 by acting

ZkXj on it.

2. Action: Bob measures the qubit and sends it to Alice.

3. Decoding: Alice flips the result if j = 1 , else does nothing.

Figure 1.1: Secure assisted computational basis measurement. The meter inside a dashed box
represents a computational basis measurement, the action performed by Bob

The correctness of the protocol can seen from the following points

• Bob receives a maximally mixed state, and hence cannot get any information from the

qubit.

• The action of Z gate does not affect the probabilities of measurement. Application of X

gate is equivalent to a bit flip.

1.2.2 Hadamard Gate

Here is the protocol such that Bob can securely help Alice apply the Hadamard gate.

1. Encoding: Alice generates two random numbers j, k. Alice encodes her qubit |Ψ〉 by acting

ZkXj on it.
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2. Action: Bob acts Hadamard gate on it and sends it to Alice.

3. Decoding: Alice acts ZjXk on the qubit.

Figure 1.2: Secure assisted Hadamard gate

The correctness of the protocol can seen from the following points

• Bob receives a maximally mixed state, and hence cannot get any information from the

qubit.

• Decoding successfully restores the qubit :

|Ψf 〉 = Decode(HEncode(|Ψi〉))

= Zj(XkHZk)Xj |Ψi〉

∵XHZ = ZHX = H

|Ψf 〉 = H |Ψi〉

(1.1)

1.2.3 Controlled Not Gate

Here is the protocol such that Bob can securely help Alice apply the Controlled NOT gate.

1. Encoding: Alice generates 4 random numbers j, k, l, m to encode the two qubits. Alice

encodes her qubits |Ψ1〉 and |Ψ2〉 by acting ZkXj and ZmX l on them respectively.

2. Action: Bob performs CNOT gate and sends them to Alice.

3. Decoding: Alice acts ZmXjZk on the control qubit and X lZmXj on the target qubit.

Figure 1.3: Secure assisted CNOT gate
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The correctness of the decoding protocol can seen as follows:

∣∣Ψ′1〉⊗ ∣∣Ψ′2〉 = Decode(CNOT12Encode(|Ψ1〉 ⊗ |Ψ2〉))

= ZmXjZk ⊗X lZmXj · CNOT · (ZkXj ⊗ ZmX l(|Ψ1〉 ⊗ |Ψ2〉))
(1.2)

For the case l = j =1

∣∣Ψ′1〉⊗ ∣∣Ψ′2〉 = ZmXZk ⊗XZmX · CNOT · ZkX ⊗ ZmX · (a1 |0〉+ b1 |1〉)⊗ (a2 |0〉+ b2 |1〉)

= ZmXZk ⊗XZmX · CNOT · ((−1)ka1 |1〉+ b1 |0〉)⊗ ((−1)ma2 |1〉+ b2 |0〉)

= a1 |0〉 ⊗ (a2 |0〉+ b2 |1〉) + (−1)mb1 |1〉 ⊗ ((−1)ma2 |1〉+ (−1)mb2 |0〉)

= a1 |0〉 ⊗ (a2 |0〉+ b2 |1〉) + b1 |1〉 ⊗ (a2 |1〉+ b2 |0〉)∣∣Ψ′1〉⊗ ∣∣Ψ′2〉 = CNOT · |Ψ1〉 ⊗ |Ψ2〉
(1.3)

Other cases can be proved similarly.

1.2.4 T gate

Here is the protocol such that Bob can securely help Alice apply the T gate.

Round 1:

1. Encoding: Alice generates 2 random numbers j, k to encode the qubit. Alice encodes her

qubit |Ψ〉 by acting ZkXj .

2. Action: Bob performs T gate and sends it to Alice.

3. Decoding: Alice acts XjZk on qubit.

Round 2: Alice uses and ancillary qubit and swaps it with the qubit if j =1.

1. Encoding: Alice generates 2 random numbers j, k to encode the qubit. Alice encodes her

qubit |Ψ〉 by acting ZkXj .

2. Action: Bob performs T gate and sends it to Alice.

3. Decoding: Alice acts XjZk on qubit.

The correctness of the decoding protocol can seen as follows:
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Figure 1.4: Secure assisted T gate

Case 1: j = 0 ( The operations after the swap gate are done on junk qubit which is discarded)

|Ψf 〉 = Decode(T · Encode(|Ψi〉))

= Zk · T · Zk |Ψi〉

∵ [Z, T ] = 0

= T · |Ψi〉

(1.4)

Case 1: j = 1 ( The operations after the swap gate are done on |Ψ〉 too)

|Ψf 〉 = (Z l ·X l · Zm · S · Zm ·X l) · (X · Zk · T · Zk ·X) |Ψi〉

∵ [Z, T ] = 0 and XTX = T †

= (Z l ·X l · Zm · S · Zm ·X l) · (T †) |Ψi〉

∵ S = T 2, [Z, S] = 0

= (Z l ·X l · T 2 ·X l) · T † |Ψi〉

|Ψf 〉 = T · |Ψi〉

(1.5)

Hadamard, controlled not and T gates are universal for quantum computation in the sense that

any unitary transformation can be approximated arbitrarily closely by some sequence of these

gates. Hence, using the above protocols, Alice can do universal quantum computation.

1.3 Security of the Protocol

Bob does not know the classical random numbers j, k. So, from his perspective, Alice has applied

the depolarising channel. Bob receives the state ZkXj |ψ〉. The density operator is

1

4

1∑
j,k=0

ZkXj |ψ〉〈ψ|XjZk =
I

2

Hence, Bob receives a maximally mixed state and it can obtain no information from it.
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The secrecy of the function can be simply ensured by Alice fixing a sequence of gate operations,

but passing junk qubits when a particular gate is not needed. She can do this using SWAP gate.

The number of gates is increases by at most a factor of three. In such a scenario, Bob can only

learn an upper bound on the number of gates in Alice’s circuit.

Although we have ensured that Bob doesn’t get to know Alice’s qubits, Bob could potentially

ruin the operation by performing wrong gates, or say not returning the qubits. Alice can check

Bob by randomly performing test of a subset of her qubits. In a case where Alice is trying to

solve NP, say factoring a large number, it could check the solution on a classical computer. But

a general adversarial scenario, in which Bob could induce errors randomly is not handled.

We have showed that Alice can do universal quantum computation. It can be easily shown that

there exists no reasonable restriction on classical computation such that ”secure assisted classical

computation” can be done. Furthermore, it has been proven that the secure assisted quantum

computation protocol that we have set up computes the required function in a reasonable amount

of time (rounds of the protocol - where each time Alice encodes her qubits, Bob acts a gate, and

Alice decodes is one round) up to arbitrary accuracy.



Chapter 2

Measurement Based Quantum

Computation

Quantum circuit model is a standard formalism for universal quantum computation. Measurement

based quantum computation [1] is another model in which coherent quantum information

processing is accomplished via a sequence of single-qubit measurements applied to a fixed

quantum state known as a cluster state. It has been shown that such a model can be used to

simulate a quantum circuit efficiently, and likewise, since we know quantum circuit model is

universal, it can efficiently simulate cluster state quantum computation. Although, the two are

equivalent in their power, this model has an ability to illustrate important ideas on quantum

computing which will be useful in studying secure assisted quantum computing.

Measurement based quantum computation in remarkable in the sense that all the basic dynamical

operations are non-unitary quantum measurements, yet they can still be used to simulate arbitrary

quantum dynamics, including unitary dynamics.

2.1 Cluster State Model

In this formalism, the computation begins with a set of qubits with known initial states, and

entangled in a certain way. This is followed by a sequence of measurements in different bases.

A graph G with n vertices can be associated to a cluster state such that each node represents

a qubit and each edge represents entanglement. The cluster state associated to the graph is

defined as follows:

• Prepare each of the n qubits in the state |+〉 ≡ (|0〉+ |1〉)/
√

2

8
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• Apply controlled-PHASE gates between qubits whose corresponding graph vertices are

connected.

State preparation is followed by a sequence of measurements. Following conditions are satisfied:

• All measurements are single qubit measurements

• Choice of the basis of measurement may depend on a function of the output of the previous

measurement. The function must be computable “efficiently” on a classical computer

For example in the figure 2.1, the numeric label indicates the time-ordering of the processing

measurements, while the unlabelled are not measured, and are a part of the output. Two qubits

which are entangled, can have the same label because measurement commutes with the controlled

phase operator. Hence the order of measurement is not important in such case.

Unitary operator in the nodes represents an action of the operator followed by standard basis

measurement. The ± notation in HZ±α2 and HZ±β2 indicates that the choice of sign depends

on the outcomes of earlier measurements, in a manner to be specified separately. This model,

Figure 2.1: An example of a cluster state. Image sourced from [2]

although requires more number of qubits compared to the circuit model of computation, it does

not require quantum “coherence” for a long time which is a considerable experimental challenge.

2.2 Simulating quantum circuits

We now see how the cluster state model can simulate the circuit based model. The key underlying

idea is the 1-bit teleportation. Here m is the output of the measurement of first qubit in standard

basis. One bit teleportation can be easily verified by taking |Ψ〉 = α |0〉 + β |1〉. One bit

teleportation in figure 2.2 can be generalised to figure 2.3 because Zθ commutes with CTRL−Z.

This is called “teleportation” because the two qubits could be spatially separated after entangling

them. And although the first qubit is not transferred physically between the two points, by

measuring the first qubit, the information contained in it is transferred to the second. It is

remarkable because by varying θ, we can vary the unitary transformation effected on the second
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Figure 2.2: Quantum 1-bit telepor-
tation

Figure 2.3: Modified 1-bit teleportation

qubit, without destroying any quantum information. Note that the information is not transferred

before the measurement. Now we see how a quantum circuit can be simulated using the cluster

state model. Consider the single qubit circuit given in figure 2.4. We show that the equivalent

cluster state model is figure 2.5. This is seen as follows : By definition in section 2.1, the cluster

state refers to three qubit being initialised with |+〉 followed by controlled phase gate between

first and second qubits, and between second and third qubits. This is followed by acting the

operator and measurement. Using the property that measurement and controlled phase commute,

figure 2.6 represents the resultant circuit.

Figure 2.4: Single qubit Circuit Figure 2.5: Corresponding cluster state
model to figure 2.4

To determine the output of the circuit, we observe that both of the highlighted boxes are of the

form of 1- bit teleportation. Hence the output of the circuit is Xm2HZ±α2X
m1HZα1 |+〉 where

m1 and m2 are the outputs of the measurements on the first and second qubits. Observe that

feedforward can be used to choose the sign of ±α2 that Z±α2X
m1 = Xm1Zα2 . We also have

HXm1 = Zm1H, and thus the output may be rewritten as Xm2Zm1HZ̃α2HZα1|+〉, which, up

to the known Pauli matrix Xm2Zm1 , is identical to the output of the conventional single-qubit

quantum circuit. Note that in general each stage will lead to a know pauli correction as a

Figure 2.6: Reduction of figure 2.5 using definition
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Figure 2.7: The brickwork state, Gn×m

function of the output of measurement. Since this is know, it is accounted for in further gates

that will be acted upon.

2.3 Brickwork States

For the purpose of secure assisted quantum computation that we will look at next, we will use

a special structure of cluster states. We construct Brick work states with a special uniform

underlying graph structure. This structure has shown to be universal, that is any operator can

be constructed using this underlying graph structure. Using this also ensures that when Alice

sends bob the encrypted cluster state, Bob cannot even learn anything about the underlying

graph structure too, apart from the initial state of each qubit (which will be encrypted).

2.3.1 Definition

A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n×m qubits constructed

as follows (see also Figure 2.7 ):

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column

(i ∈ [n]) and j being a row (j ∈ [m])

2. For each row, apply the operator CTRL- Z on qubits (i, j) and (i, j+1) where 1 ≤ j ≤ m−1

3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator CTRL- Z on qubits

(i, j) and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2)

4. For each column j ≡ 7 (mod 8 ) and each even row i, apply the operator CTRL- Z on

qubits (i, j) and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2)
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2.3.2 Universality of Brickwork States

Theorem: The brickwork state Gn×m is universal for quantum computation. Furthermore, we

only require single-qubit measurements under the angles {0,±π/4,±π/2}, and measurements

can be done layer-by-layer.

Proof: We know that U = {CTRL−X,H, π8 , I} forms the set of universal gates. We show how

brickwork states can be used to simulate all the gates in U. Figures 2.8,2.9,2.10 and 2.11 present

the required implementations. These images have been sourced from [3].

Also note that any pattern can be rewritten in a standard form, where all the preparation and

entangling command are performed only at the beginning of the computation, because of the

following commutation relations ( where Eij represents the CRTL-Z operator):

EijX
s
i = Xs

i Z
s
jEij

EijZ
s
i = ZsiEij

EijZ
s
i (α) = Zsi (α)Eij

Figure 2.8: Implementation of a Hadamard gate.

Figure 2.9: Implementation of a π
8 gate.

Figure 2.10: Implementation of the identity.
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Figure 2.11: Implementation of a CTRL-X.

We can verify the above implementations by algorithmically converting to the circuit model

using the definitions provided earlier. Using symmetry, the gates could be shifted from the first

to the second qubit. These patterns can be tiled to construct any to implement any circuit using

U as a universal set of gates.



Chapter 3

Protocol for Blind Computation

without requiring quantum memory

Using the formalism presented in the previous chapter, we now present a formalism in which

Alice’s (client’s) inputs, outputs, and computation remain secure as Bob computes the required

function for Alice. This protocol is more powerful because it does not require Alice to be able

to perform any quantum gates or have quantum memory. This protocol [2] requires a two way

classical channel that will drive the interactive protocol forward.

3.1 Outline of the Protocol

Alice has a classical computer restricted to modulo 8 arithmetic, augmented with the power to

prepare single qubits randomly chosen in{
1/
√

2
(
|0〉+ eiθ |1〉

)
|θ = 0, π/4, 2π/4, . . . , 7π/4

}

Bob has a universal quantum computer. Shared quantum and classical channels are required.

The protocol is interactive, it consists of rounds of communication between Alice and Bob as a

“feedback” mechanism. This protocol is given in the formalism of measurement based quantum

computation, described earlier.

We have proved that cluster states are universal, and any MBQC (and any quantum computation)

can be performed using cluster states. We use them to make our protocol secure such that Bob

does not even know the underlying graph structure used. The only information Bob gets is the

upper bound on the size of computation.

14
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Since MBQC is universal, we can express the computation Alice seeks to perform as as a

measurement pattern on a brickwork state. The protocol can then be viewed as a distributed

version of a measurement based quantum computation such that :

1. Alice prepares the individual qubits on the cluster state

2. Bob does the entanglement according to the brickwork state and measurements as specified

by Alice

3. Alice computes the classical feedforward mechanism

If Alice is computing a classical function, the protocol finishes when all qubits are measured. If

she is computing a quantum function, Bob returns to her the final qubits. A modification of the

protocol also allows Alice’s inputs to be quantum.

3.2 Main Protocol

U Unitary operator to be implemented

Gn×m brickwork state

|ψx,y〉 qubit in Gn×m indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}
φx,y measurement angle for |ψx,y〉 to compute U

Xx,y set of X dependencies for the node (x, y)

Zx,y set of Y dependencies for the node (x, y)

sXx,y = ⊕i∈Xx,ysi , parity of all measurement outcomes for qubits in Xx,y

sZx,y = ⊕i∈Z′
x,y
si , parity of all measurement outcomes for qubits in Zx,y

φ′x,y = (−1)s
X
x,yφx,y + sZx,yπ, actual measurement angle

.

3.2.1 Blindness

Definition Let P be a quantum delegated computation on input X and let L(X) be any function

of the input. We say that quantum delegated computation protocol is blind while leaking at

most L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

2. Given the distribution of classical information described in 1, the state of the quantum

system obtained by Bob in P is fixed and independent of X



Chapter 3. BQC without quantum memory 16

Protocol 1 Universal Blind Quantum Computation

1. Alice’s preparation
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣∣+θx,y

〉
= 1√

2
(|0〉+ eiθx,y |1〉) | θx,y = 0, π/4, . . . , 7π/4} and

sends the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m.

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′x,y where sX0,y = sZ0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {
∣∣+δx,y

〉
,
∣∣−δx,y〉}.

3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.

3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

We now prove that Protocol 1 1 is blind leaking at most (n,m), the dimension of the brickwork

state.

Alice’s input consists of

φ = (φx,y|x ∈ [n], y ∈ [m])

with the actual measurement angles

φ′ =
(
φ′x,y|x ∈ [n], y ∈ [m]

)
being a modification of φ that depends on previous measurement outcomes. Let the classical

information that Bob gets during the protocol be

δ = (δx,y|x ∈ [n], y ∈ [m])

Independence of Bob’s Classical information: for a uniformly random chosen θx,y:

θ′x,y = θx,y + πrx,y

1The Protocol has been retrieved from [3] (https://arxiv.org/abs/0807.4154v3)

https://arxiv.org/abs/0807.4154v3
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and

θ′ =
(
θ′x,y|x ∈ [n], y ∈ [m]

)
.

δ = φ′ + θ′, with θ′ is uniformly random (and independent of φ and/or φ′ ). This implies the

independence of δ and φ.

Independence of Bob’s quantum information:

For each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′x,y + θ′x,y and |ψx,y〉 = 1√
2

(
|0〉+ ei(δx,y−φ

′
x,y)|1〉

2. rx,y = 1 so δx,y = φ′x,y + θ′x,y + π and |ψx,y〉 = 1√
2

(
|0〉 − ei(δx,y−φ′x,y)|1〉

Because rx,y is uniformly random, and independent of φ, without the knowledge of rx,y, the

system is in maximally mixed state. Hence Bob can get no information out of it.

3.3 Modification: Quantum inputs and outputs

3.3.1 Quantum Inputs

The main protocol can be extended to allow for quantum inputs easily if we allow Alice to

be able to apply X and Z gates. Alice then encrypts her qubit by acting X lZm where l,m

are random coin tosses. Alice then sends this maximally mixed state to Bob for computation.

The rest of the protocol is same as before. This protocol is blind because Bob only receives a

maximally mixed state as inputs from Alice.

3.3.2 Quantum outputs

Instead of measuring the last layer of qubits, Bob returns it to Alice. Since, at each step in

Protocol 1, the qubits are one time padded, Protocol 2 2 is correct and private.

3.4 Detecting a cheating server

We now present an authentication technique which enables Alice to detect an interfering Bob

with overwhelming probability. That is, either an interfering Bob is corrected and not detected,

or is detected with overwhelming probability.

2The Protocol has been retrieved from [3] (https://arxiv.org/abs/0807.4154v3)

https://arxiv.org/abs/0807.4154v3
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Protocol 2 Universal Blind Quantum Computation with Quantum Outputs

1. Alice’s auxiliary preparation
For each column x = 1, . . . , n− 1
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {
∣∣+θx,y

〉
| θx,y = 0, π/4, 2π/4, . . . , 7π/4} and sends the qubits

to Bob.

2. Alice’s output preparation

2.1 Alice prepares the last column of qubits |ψn,y〉 = |+〉 (y = 1, . . . ,m) and sends the
qubits to Bob.

3. Bob’s preparation

3.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a graphstate Gn×m.

4. Interaction and measurement
For each column x = 1, . . . , n− 1
For each row y = 1, . . . ,m

4.1 Alice computes φ′x,y where sX0,y = sZ0,y = 0 for the first column.

4.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′x,y + θx,y + πrx,y .

4.3 Alice transmits δx,y to Bob.

4.4 Bob measures in the basis {
∣∣+δx,y

〉
,
∣∣−δx,y〉}.

4.5 Bob transmits the result sx,y ∈ {0, 1} to Alice.

4.6 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

5. Output Correction

5.1 Bob sends to Alice all qubits in the last layer.

5.2 Alice performs the final Pauli corrections Zs
Z
n,yXsXn,y .

Using Trap wires: For functions with classical input and output, Alice places N randomly

placed trap wires with known random state |0〉 or |1〉. If Bob interferes,either his interference has

no effect on the classical output or there is at least 50% chance that Alice detects incorrect value

on one of the trap wires. This protocol is repeated s times, and if the function output is same all

s times and Bob is not caught cheating, Alice accepts or rejects. There is an exponentially small

(2−s) probability that Alice accepts wrong result. The blind computation protocol is extended

by allowing Alice to instruct Bob to measure specific qubits within the brickwork state in the

computational basis at regular intervals. These qubits are chosen at regular spacial intervals so

that no information about the structure of the computation is revealed.
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Protocol 3 Blind Quantum Computing with Authentication (classical input and output)

1. Alice chooses C, where C is some nC-qubit error-correcting code with distance dC. The
security parameter is dC.

2. In the circuit model, starting from circuit for U , Alice converts target circuit to fault-tolerant
circuit:

2.1 Use error-correcting code C. The encoding appears in the initial layers of the circuit.

2.2 Perform all gates and measurements fault-tolerantly.

2.3 Some computational basis measurements are required for the fault-tolerant implemen-
tation (for verification of ancillae and non-transversal gates). Each measurement is
accomplished by making and measuring a pseudo-copy of the target qubit: a ctrl-X
is performed from the target to an ancilla qubit initially set to |0〉, which is then
measured in the Z-basis.

2.4 Ancilla qubit wires are evenly spaced through the circuit.

2.5 The ancillae are re-used. All ancillae are measured at the same time, at regular
intervals, after each fault-tolerant gate (some outputs may be meaningless).

3. Within each encoded qubit, permute all wires, keeping these permutations secret from
Bob.

4. Within each encoded qubit, add 3nT randomly interspersed trap wires, each trap being a
random eigenstate of X, Y or Z (nT of each). For security, we must have nT ∝ nC; for
convenience, we choose nT = nC. The trap qubit wire (at this point) does not interact
with the rest of the circuit. The wire is initially |0〉, and then single-qubit gates are used
to create the trap state. These single-qubit gates appear in the initial layers of the circuit.

5. Trap qubits are verified using the same ancillae as above: they are rotated into the
computational basis, measured using the pseudo-copy technique above, and then returned
to their initial basis.

6. Any fault-tolerant measurement is randomly interspersed with verification of 3nT random
trap wires. For this, identity gates are added as required.

7. For classical output, the trap wires are rotated as a last step, so that the following
measurement in the computational basis is used for a final verification.

8. Convert the whole circuit above to a measurement-based computation on the brickwork
state, with the addition of regular Z-basis measurements corresponding to the measurements
on ancillae qubits above. Swap and identity gates are added as required, and trap qubits
are left untouched.

9. Perform the blind quantum computation:

9.1 Execute Protocol 1, to which we add that Alice periodically instructs Bob to measure
in Z-basis as indicated above.

9.2 Alice uses the results of the trap qubit measurements to estimate the error rate; if it
is below the threshold (see discussion in the main text), she accepts, otherwise she
rejects.



Chapter 4

Efficient Universal Blind Quantum

Computation

We now look at an protocol for blind quantum computation which is efficient in terms of the

communication between Alice and Bob [5]. In contrast to the protocol in Chapter 1, this does

not require transfer of computational qubits between Alice and Bob. While the protocol in

Chapter 2, which uses measurement based computation is optimal in communication complexity,

this protocol has the advantage of being described in circuit model of computation, which is

more intuitive. However, this protocol requires transfer of a“quantum register” as a trade off.

4.1 Main Protocol

In this protocol, Alice has limited capabilities, as before. She can generate a qubit in the standard

basis (|0〉 , |1〉) and the complementary basis (|+〉 , |−〉). She also has a quantum register of

size O(log2(N)), where n is the number of qubits. Bob has a universal quantum computer.

Alice instructs Bob to perfrom an arbitrary J step computation by giving him Jlog2(G) bits,

where G = N(N + 2) is the set of universal gates. This is done using a pre-decided set of

codes such that each number n ∈ (0...(N(N + 2) correspond to an instruction of the form

“Apply A gate to B qubit(s)”. The main protocol is described in 4. It is important to note that

Bob’s action is implemented as an oracle and he does not measure the register in every round.

For each state |Ψ〉M of M and |φ〉A =
∑

n ηn |n〉A of A he performs the control-unitary gate

UBob =
∑

n |n〉〈n| ⊗ Un which yields the mapping

|φ〉A ⊗ |Ψ〉M →
∑
n

ηn|n〉A ⊗ Un|Ψ〉M

20
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Protocol 4 Efficient Universal Blind Quantum Computation

Setup: Bob has access to quantum computation and a quantum memory which can hold N
qubits assigned an initial state(say the vector |0〉⊗N ) and a set G of O(poly(N)) universal gates
he can apply to them.

1. Bob initializes his qubits in |0〉⊗N .

2. jth computation step: Alice sends Bob a register A of O(log2N) qubits. It (randomly)
either contains the qubit to which a gate is to be applied (e.g. |3〉A means “apply the
Hadamard gate to qubit #3”), or it contains a decoy (e.g. |n〉A + |n′〉A).

3. Bob uses Alice’s register to establish to which qubits to apply the gates of the universal
set: e.g. Bob’s action UBob |3〉A |Ψ〉M applies the Hadamard gate to Bob’s qubit #3 (here
|Ψ〉M represents the global state of Bob’s qubits). If the register contains a decoy, he will
apply the gates to a superposition of registers.

4. Bob sends the register A back to Alice.

5. If Alice knows that the register A is unentangled from Bob’s qubits, she measures it [case
(a), see text]. Otherwise she sends it back to Bob as one of the successive instructions until
it becomes unentangled, and then measures it [case (b)]. If the measurement result matches
the state she had initially prepared, she proceeds to the next step of the computation
through point 2, otherwise she halts the computation.

6. At the end of the computation, Bob measures the computation qubits and reveals the
computation result (possibly encrypted, see text).

4.2 Correctness of the Protocol

4.2.1 Blindness

Blindness is achieved by randomly interspersing the instructions with lures. This only adds a

small overhead in terms of size of memory and communication. A quantum lure is created by

using a superposition of at least two instructions being sent to Bob. This can be done using

Alice’s limited ability of being able to generate qubits only in standard and complementary

basis. For example, in the case of a two-qubit register a quantum lure as a superposition of the

instructions |n = 0〉A and |n = 2〉A is prepared by the factorized state |+, 0〉A = |0, 0〉A + |1, 0〉A.

After the operation, when Bob sends teh register back to Alice, she checks her lures to know

if Bob has attempted to ”read her qubits or not. The probability that Bob can cheat for j

computational steps without being detected by Alice decreases exponentially as pγj , where γ is

the average fraction of instructions that are lures and p is the probability of being detected on a

single lure. Thus Bob can cheat only for a constant number of steps before being detected by

Alice. Similarly, any eves-dropper who can access the register, will also be detected similarly.
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4.2.2 Completeness

Assuming the setup as mentioned in the Protocol above, let’s try to fix a notation. We can

assume for instance that G contains G = N(N + 2) elements including a Hadamard and a π/8

gate for each qubit and a C-NOT for each (ordered) couple of qubits of M . In this scenario,

Alice can instruct him to perform an arbitrary computation by telling him which element of G
he must apply at each step of the computation.

4.3 Efficiency of the Protocol

4.3.1 Communication Complexity

Before considering a general case. let’s try to look at an example. Alice can send a number n

between 0 and G− 1, which Bob interprets in the following way: 0 to N − 1 means “act with a

Hadamard gate on qubit n”, N to 2N − 1 means “act with a π/8 gate on qubit n−N”, and

any other number means “act with a C-NOT gate using n1 as control and n2 as target”, where

n1, n2 are such that n = n1N + n2 + 2N . We can easily come up with such a setup for any

computation we might need. For this, she needs a log2G ' O(log2N) bit register. She can thus

instruct Bob to perform an arbitrary J-step computation by giving him J log2G ' O(J log2N)

bits. This communication cost is optimal, because a programmable quantum computer requires

a program register of dimension at least as large as the number of possible computations that

it can perform(since at each step Bob can apply one out of G possible gates, in our case such

number is indeed equal to GJ , which requires J log2G bits). Hence, this protocol is optimal in

terms of the number of exchanged bits of information between Alice and Bob, as a universal

quantum computer cannot have a software register of less than O(J log2N) bits. The blind

protocol simply requires these to be qubits instead of bits. This requires a small overhead

composed by the decoys and the final one-time-pad encoding. Hence, the total communication

complexity is then still O(J log2N) qubits.

4.3.2 Computational and Memory Complexity

The running time for this protocol will be linear (a constant fraction γ of the operations will be

decoy operations), so the algorithm running time will be O((1 + γ)J). Here we can choose the

fraction γ to be arbitrarily small when J → ∞ as it can scale as J−1/2, ignoring logarithmic

corrections.

The memory required in terms of qubits is linear. We need a constant fraction λ of qubits to be

devoted to Alice’s decoy operations, so that the qubit cost goes from N to N(1 + λ). In terms
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of gates, there is no overhead with respect to what is necessary for a universal programmable

quantum computer. The only difference is that Alice’s register is encoded in quantum bits

instead of a sequence of classical numbers. This means that Bob needs controlled-swaps that are

controlled by a quantum register instead of a classical register.

Summarizing, modulo logarithmic or constant corrections, this protocol does not require any

significant computational or communication overheads over what is necessary for a universal

programmable quantum computer with the only substantial difference being that Alice’s registers

is encoded in qubits instead of bits.



Chapter 5

Secure Quantum Machine Learning

Quantum Machine Learning ([4] is a good review on QML) is touted to be the next major leap

in the field of Machine Learning, although it doesn’t seem likely that everyone will have access

to Quantum Resources, blind computation provides a method for computations to be done

at a central server securely and the users can provide their information and receive results of

computation back in an encrypted fashion so that an intermediary eavesdropper cannot access

any secure information.We describe below a protocol to perform a very basic Quantum Machine

Learning protocol in a secure and blind manner[6]

5.1 Description of Protocol

Most Quantum Machine Learning Algorithms revolves around finding the distance between two

states, one being the states we want to classify and the other being the label states.Let Ua and

Va be two label states and U be the state we wish to classify then if,

|Ua − U | < |Va − U |

we classify the state to the label of Ua similarly if

|Va − U | < |Ua − U |

we classify it as Va,we know that,

|U − V | =
√
|U |2 + |V |2 − 2 〈U |V 〉

Therefore we can see that in the calculation of distance between two states the crucial term to

calculate is the term 〈U |V 〉 since the other terms are easily calculable classically. Therefore, this

24
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protocol deals with the calculation of 〈Ua|U〉 and 〈Va|U〉 which can therefore help us classify the

states. Given below is a detailed description of the protocol.

5.1.1 Initial Resources and setup.

Let Alice and Bob be the two parties involved in the computation Alice being the client and

Bob being the Central server.Given below is a diagram describing Alice an Bob’s setup

Figure 5.1: Resource distribution between Alice and Bob shown in a diagram

1. Alice and Bob share 3 Quantum channels a1b1,a2b2 and a3b3 as well as a classical channel.

2. There are three entanglement sources S1 S2 S3 which produce a Bell pair between Alice

and Bob,Alice and Bob share 2N Qubit pairs in each channel.

3. Alice has single Qubit Rotations and Measurement Apparatus while Bob has access to

universal set of resources.

4. Alice intends to calculate the overlap between two states i.e. 〈U |V 〉

5. Let vector U = α |0〉+ β |1〉 and V = γ |0〉+ δ |1〉

6. The task is to calculate securely and blindly α∗γ + β∗δ

5.1.1.1 Checking Phase

The initial step of the Protocol is to check whether the channels are secure and there are no

eavesdropper in the channel acquiring the information,as mentioned before there 2N shared
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bell pairs |φ+〉 in each of the channels,we use N of these 2N qubits to check the security of the

channel,the method used for this is that Alice and bob decide on a basis either the X-basis or

the Z-basis for each of the N qubits and measure the qubits in that basis on their side. They

then compare the measurement outcomes since they share a bell pair state |φ+〉 they must have

the same measurement outcomes in the same basis,if an eavesdropper interferes the channel by

either measuring or altering the state the measurement outcomes will not match.

5.1.2 Transmission of state from Alice to Bob

This part can further be divided into 3 sub parts which is assigned to each of the 3 Quantum

Channels shared between Alice and Bob.

1. Alice randomly measures the N Qubits of Channel a1b1 either the X-basis or the Z-basis

without revealing the information to bob,this leads to Bob’s qubits getting collapsed to a string of

|0〉 |+〉 |+〉 |1〉 |0〉 |−〉 |+〉 |−〉..... N Qubits this will act as a code for our information transmission.

2. The Qubits of channel a2b2 are rotated by an operation given by R1,which is defined by

R1 |0〉 = α |0〉+ β |1〉

R1 |1〉 = β |0〉 − α |1〉

Action of this rotation leads to the following combined state,

{R1⊗ I} |φ+〉 =⇒ {R1⊗ I}
[
|00〉+ |11〉

2

]
=⇒

[
α |00〉 − α |11〉+ β |01〉+ β |10〉

2

]
Therefore,

{R1⊗ I} |φ+〉 = |0〉 [α |0〉+ β |1〉] + |1〉 [β |0〉 − α |1〉]

Now,Alice measure her qubits in the [|0〉 , |1〉] which leads to Bob’s state collapsing to either

α |0〉 + β |1〉 if measurement is 0 or β |0〉 − α |1〉 if the measurement is 1,now Alice shares

her measurement result to Bob,after which Bob can alter his state to obtain the state |U〉 =

α |0〉+ β |1〉

3. Similarly Bob can obtain |V 〉 using the qubits on the channel a3b3.
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Figure 5.2: Schematic showing the series of operations taking place in the protocol

5.1.3 Calculation of 〈U |V 〉

Bob acts as a Fredkin gate,Controlled swap gate between all three of his Qubits [a1b1⊗a2b2⊗a3b3]

this can lead to two possibilities, If control qubits is [|0〉 , |1〉]

|0〉 |U〉 |V 〉 Fredkin−−−−−→ |0〉 |U〉 |V 〉

|1〉 |U〉 |V 〉 Fredkin−−−−−→ |0〉 |V 〉 |U〉

If control qubits is [|+〉 , |−〉]

|±〉 |U〉 |V 〉 Fredkin−−−−−→ |+〉 |U〉 |V 〉 ± |−〉 |V 〉 |U〉√
2

Now Bob returns the control qubit back to alice and since Alice knows the Polarization of

the Qubit,she can reject all the [|0〉 , |1〉] qubits and in case of the [|+〉 , |−〉] Alice performs

measurement in the X-basis the probability of measurement of + is given by

P+ =
1 + |〈U |V 〉|2

2

Therefore if the task is run for a statistically large no. N we can obtain the value of 〈U |V 〉 using

the probability of measurement in the state |+〉

5.2 Blindness of Protocol

1. The blindness of the protocol from an external eavesdropper is checked in the checking

phase if there are any eavesdroppers in the channel they will be detected and the channel

will be recaptured.
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2. The reliability of the channel can also be checked when the control qubit is returned from

Bob to Alice,since Alice is aware of the polarization she can check the qubit my measuring

it in it’s respective basis and comparing them to the initial measurement outcomes.

3. Blindness from Bob is ensured by the fact that Bob only has access to |U〉 , |V 〉 but not

the values of |U |, |V | so he cannot obtain the learning operations completely.

5.3 Conclusion

The above protocol gives a protocol to perform Client-Server based Quantum Machine Learn-

ing,The protocol can easily be extended to higher dimensions,A similar protocol can be proposed

in which there exists a central Database who has access to the states,the Protocol is just a small

modification of the original protocol with the operations being distributed between the Central

Server,Alice and Bob. Given below is a diagram for the proposed network.

Figure 5.3: Schematic for a Modified protocol with a Database-Client-Server-Topology.

This protocol provides a stepping stone in the direction of future Quantum Big-Data operations.



Conclusion

We have reviewed protocols that allow non - trusting parties to do computation collaboratively

in a secure and blind manner. Although we started with a simplistic algorithm, we were able to

introduce the ideas of ‘quantum encryption’ and show that using X and Z gates (and classical

keys) one can generate a maximally mixed state. We presented two other efficient protocols in

terms of communication. All the three protocols satisfied the three requirements:

1. Universality : Can run any quantum algorithm

2. Blindness : Bob does not get to know the input or the function that is to be computed

with an exponentially large probability

3. Verifiablity : Alice can detect an uncooperative Bob

The three protocols make different trade-offs. While the algorithm by Childs [3] requires transfer

of n qubits, it required the transfer only once, irrespective of the depth of the of the computation.

The algorithm by Giovannetti, et al [5] requires a quantum memory of logN size, but it requires

transfer for each round. It also requires Bob to have the instruction to be implemented as an

oracle, which is not simple. In comparison, Childs required Alice to have X and Z gates. The

MBQC protocol [2], although requires a large number of qubits, does not require them to be

coherent for a long time, as they are measured.

We have also presented a protocol such that a distributed quantum machine learning can be

implemented in a secure manner. This is going to be relevant and quantum computing and

quantum machine learning picks up pace. Measurement Based quantum computing presents us a

fresh approach to think of quantum algorithms and quantum computation. Although it involves

a larger number of qubits, the stability expectation is much lower and certain decoherence shall

be acceptable. We present simulation of the MBQC secure protocol in Appendix.

Finally, the MBQC model has the scope of being extended to a blind neural network model.

With the blindness and security in place, enabling multiple connections to very node will pave

way to future work.
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